Zadanie 1

Każą z podanych liczb przedstaw w postaci iloczynu potęg jej czynników pierwszych.

a) 1152

b) 1400

c) 3267

Zadanie 2

Oblicz.

a) $\sqrt{3,6} \cdot \sqrt{4 \frac{2}{3}} \cdot \sqrt{1,4} \cdot \sqrt{5 \frac{1}{3}}$

b) $\sqrt{3,61} \cdot \sqrt{0,125} + \sqrt{64,8} : \sqrt{0,3}$

Zadanie 3

Oblicz.

a) $\sqrt{3 + 4^2 + 9^2}$

b) $\sqrt[3]{3^3 + 4^3} + 34$

c) $\sqrt[4]{4} \cdot \sqrt[4]{64}$
Zadanie 4
Niech \(x = 3,84 \cdot 10^5 \).
Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

| \[x + 1000000 = 4,84 \cdot 10^5 \] | P | F |
| \[x \cdot 1000000 = 3,84 \cdot 10^{10} \] | P | F |

Zadanie 5
Wskaż poprawne dokończenie zdania.

Wartość wyrażenia \(\frac{\sqrt{\alpha \cdot k}}{120} + \frac{\sqrt[3]{0,008}}{\sqrt[3]{0,008}} \) jest równa

A. \(1 \frac{2}{3} \)
B. \(\frac{4}{5} \)
C. 0,25
D. 0,04

Zadanie 6
Dla jakiej wartości \(x \) podana równość jest prawdziwa? Wynik podaj w notacji wykładniczej.

\((2 \cdot 10^6) \cdot x + 3,6 \cdot 10^9 = 2,4 \cdot 10^{10} \)
Zadanie 1
Każdą z podanych liczb przedstaw w postaci iloczynu potęg jej czynników pierwszych.

a) 1188

b) 1323

c) 3200

Zadanie 2
Oblicz.

a) \(\sqrt{1,4} \cdot \sqrt{2 \frac{2}{3}} \cdot \sqrt{6,3} \cdot \sqrt{5 \frac{1}{3}}\)

b) \(2,89 \cdot \sqrt{0,125} + \sqrt{86,4} : \sqrt{0,4}\)

Zadanie 3
Oblicz.

a) \(\sqrt{20 + 4^2 + 8^2}\)

b) \(\sqrt[3]{4^3 + 2^3 + 53}\)

c) \(\sqrt[3]{8 \cdot \sqrt{64}}\)
Zadanie 4
Niech \(x = 8,82 \cdot 10^7 \).

Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

| \(x + 1000000 = 8,92 \cdot 10^7 \) | P | F |
| \(x \cdot 1000000 = 8,82 \cdot 10^{11} \) | P | F |

Zadanie 5
Wskaż poprawne dokończenie zdania.

Wartość wyrażenia \(\frac{\sqrt[3]{0,027} \cdot \sqrt[3]{125}}{\sqrt[3]{0,027} \cdot \sqrt[3]{125}} \) jest równa

A. 3.
B. 5.
C. 0,3.
D. 0,5.

Zadanie 6
Dla jakiej wartości \(x \) podana równość jest prawdziwa? Wynik podaj w notacji wykładniczej.

\((5 \cdot 10^4) \cdot x + 3,5 \cdot 10^9 = 5,5 \cdot 10^{10} \)
Zadanie 1
Każą z podanych liczb przedstaw w postaci iloczynu potęg jej czynników pierwszych.
 a) 1377 b) 2800 c) 3888

Zadanie 2
Oblicz.
 a) $\sqrt{4,2} \cdot \sqrt{\frac{2}{3}} \cdot \sqrt{4,8} \cdot \sqrt{\frac{2}{3}}$
 b) $\sqrt{4,41} \cdot \sqrt[3]{0,512} + \sqrt[3]{38,4} : \sqrt[3]{0,6}$

Zadanie 3
Oblicz.
 a) $\sqrt{15 + 6^2 + 7^2}$
 b) $\sqrt[3]{3^3 + 4^3 + 5^3}$
 c) $\sqrt{16} \cdot \sqrt{16}$
Zadanie 4
Niech \(x = 5,14 \cdot 10^6 \).
Oceń prawdziwość zdania. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

| \(x + 1000000 = 5,24 \cdot 10^6 \) | P | F |
| \(x \cdot 1000000 = 5,14 \cdot 10^{12} \) | P | F |

Zadanie 5
Wskaz poprawne dokończenie zdania.

Wartość wyrażenia \(\frac{\sqrt{\frac{27}{64}} + \sqrt{0,125}}{\sqrt{\frac{27}{64}} - \sqrt{0,125}} \) jest równa

A. 5.
B. 0,8.
C. \(\frac{7}{8} \).
D. \(\frac{5}{8} \).

Zadanie 6
Dla jakiej wartości \(x \) podana równość jest prawdziwa? Wynik podaj w notacji wykładniczej.

\((3 \cdot 10^4) \cdot x + 4,8 \cdot 10^{11} = 5,1 \cdot 10^{12} \)
Zadanie 1
(.... / 3 pkt)
Każdą z podanych liczb przedstaw w postaci iloczynu potęg jej czynników pierwszych.

a) 1300 b) 2304 c) 3969

Zadanie 2
(.... / 2 pkt)
Oblicz.

a) $\sqrt{6,4} \cdot \sqrt{2\frac{1}{3}} \cdot \sqrt{1,8} \cdot \sqrt{4\frac{2}{3}}$
 b) $\sqrt{6,76} \cdot \sqrt{0,216} + \sqrt{44,8} : \sqrt{0,7}$

Zadanie 3
(.... / 3 pkt)
Oblicz.

a) $\sqrt{11 + 5^2 + 8^2}$
 b) $\sqrt[3]{2^3 + 3^3 + 90}$
 c) $\sqrt[3]{8} \cdot \sqrt[3]{8}$
Zadanie 4
Niech \(x = 4,18 \cdot 10^6 \).
Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

| \[x + 1000000 = 5,18 \cdot 10^6 \] | P | F |
| \[x \cdot 1000000 = 4,18 \cdot 10^{12} \] | P | F |

Zadanie 5
Wskaź poprawne dokończenie zdania.

Wartość wyrażenia \(\frac{\sqrt{\frac{2x}{125}} + \sqrt[3]{0,064}}{\sqrt{\frac{2x}{125}} - \sqrt[3]{0,064}} \) jest równa

A. \(\frac{1}{5} \)
B. 5
C. 0,4
D. 0,33

Zadanie 6
Dla jakiej wartości \(x \) podana równość jest prawdziwa? Wynik podaj w notacji wykładniczej.

\((4 \cdot 10^5) \cdot x + 1,2 \cdot 10^{12} = 6,4 \cdot 10^{13}\)